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ABSTRACT

Several theoretical aspects of the pB-decay process in T2 are
discussed. New results of the stabilization method calculations for
the resonance states of the daughter HeT' ion are presented. The
probabilities for this system to be found in various final shake-off
states after the T2 decay have been calculated. The B-decay spectra
are generated using probability distributions of various accuracies.
It is shown that, if the actual neutrino mass were 30 eV, one would
obtain masses of 6 and 25 eV using the bare tritium nucleus and the
tritium atom spectra, respectively, for analyzing the data. If the
nuclear motion effects were neglected, the obtained mass would be 30
eV but the endpoint energy would be shifted by 1.5 eV. For a 30 eV
mass the accuracy of our calculations is much better than necessary:
substituting our data by those obtained with a very poor basis set
changed the neutrino mass by about 1 eV only. Fpr a 1 eV mass,
hovever, the less accurate calculation would 1lead to a zero mass. In
particular, including the effects of nuclear motion is important to
correctly determine a 1 eV mass. The accuracy of reéonance states of
the daughter ion has practically no influence on the final result. Ve
argue that solid state effects will lead to corrections insignificant

with respect to the expected experimental errors.



I. INTRODUCTION

During the past 5 years the problem of the neutrino mass has
become one of the most discussed and controversial topics in particle
physics, astrophysics and cosmology. This development started with
measurements of neutrino oscillations1 and of the tritium B8 spectrumz.
Both experiments have been severely criticized (see Refs. 3 and 4 for
revievs). In the former experiment new measurements by several groups3
disproved Reines’ et al.1 finding. Lubimov’s et al. neutrino mass
experiment2 has been repeated twice by the same IETP group.s’6 In
response to criticism, each time the authors changed their method of
processing the data, but their value of the neutrino mass remained
more or less unchanged. Unfortunately, the IETP group did not process
their older data with the improved methods. Therefore, one cannot say
vhether their new results corroborate the previous ones with a more
accurate measurement, and whether the changes 1in the procedures of
processing the data were important.

One of the main objections against Lubimov’s et al. experiment
wvas their use of a fairly complicated molecule, tritrated valine:
CSHIINOZ’ as the radioactive source. It has been pointed out already
by Bergkvist7 that a correct account of the effects of atomic or
molecular surroundings in the analysis of experimental data is crucial
for determining the neutrino mass. In a series of papers, Kaplan,

9 .
'” presented some calculations of these effects for

Smelov and SmutnyB
valine. However, these authors also acknowledge that their results are

very approximate due to the size of the system. In another experiment



by Simpson10 the final state effects are much less important, however,
this experiment suffers of rather poor resolution. Therefore, the most
promising experiments now undervay are those which use the atomic or

molecular tritium sour:ces;n'13

only for such systems accurate quantum
mechanical calculations are feasible.

In the two previous publications of this series, which will be
referred to as Part I14 and Part II,15 ve have presented calculations
for the B decay of T2 molecule. In Part I the discrete electronic
states of HeT' were treated. In Part II the effects of nuclear motion
vere taken into account for these states. In the present paper we will
report an extension of our previous calculations16 for the remaining,
continuous part of the spectrum and for the resonance states embedded
in it. All these calculations produced a complete probability
distribution for the final states and enabled us to c&nstruct an
accurate B spectrum for T2, vhich has alreaay been ﬁublished in a
Letter.17 In the present paper we will discuss in more detail several
theoretical aspects connected with this spectrum. Ve vill also show
how the final value of the neutrino mass depends on the probability
distribution used to construct the model theoretical B spectrum. This
will be done by fitting spectra of various accuracies to a set of
quasi-experimental points generated from our most accurate theoretical

spectrum by a Monte Carlo method.



II. THEORY

The neutrino mass extracted from a PB-decay experiment will
critically depend on the theoretical model used. There are several
features of the model - connected with the experimental situation and
with the level of theoretical knowledge of the parent and daughter
system - the interplay of which can lead to erratic final values.
Later we will discuss the results of some numerical experiments
examining this problem. Since we did not find a satisfactory
theoretical formulation in the literature and since we want to clearly
specify all approximations, we will start with a presentation of the
theoretical background of the process.

An expression for the B-decay spectrum can be derived from the

Fermi theory.la’19

We will present a nonrelativistic derivation except
for using the relativistic relation between the momentum and energy
for the B electron and antineutrino. Ve conéider the‘B-decay of an
isolated T2 molecule, which can be trivially generélized to any
molecular case. The products of a T2 B decay are

T2 N (HeT+)n + e + v .' (1)

vhere (HeT+)n means that the HeT' ion is in its nth quantum state Yi.

We also assume that T2 was in 1its ground state Yi and that the B8
. (] » -’ 1]

electron and antineutrino have momenta ke and kG' respectively. The

momentum of the HeT' ion (the recoil momentum) will then be K = -(Ee +

_)

kﬁ)'

According to the Fermi theory the decay probability density per

unit time for the reaction (1) is given by the familiar golden rule

. 19
expression



2n i 2
Ri*f oy = [<® |H6|0 > 6(Ei ~ Ef) (2)
vhere Of and ' denote the final and initial quantum states and HB is
the veak interaction operator responsible for the decay. The operator
éB can be written in the form19
- N TR T S TP O >
Hy - g J Y V@ YD B & e b (3)

vhere g is the Fermi constant describing the strength of the weak
interaction and "h.c." denotes the hermitean conjugate. The field
operators ;;(;) and ;a(;) create and destroy a particle a‘at the point
;, respectively. The subscripts p, n, e and Vv refer to the proton,
neutron, electron, and antineutrino, respectively. The creation
operator Q+ is the hermitean conjugate of the annihilation operator ;.

The latter operator acting on a wave function which depends on

coordinates of N particles of a given kind produces the following

result

5 3

Y(3) #(..., I S ?N) =N ..., X, ?2, ) (4)

vhere the additional points indicate that the function ¢ may depend on
coordinates of other kinds of particles. We may write the matrix

element in Eq. (2) as

£ - i A T T £f,. > i »>
Tig = <O IHgI#> - g J SACRACIEN R AR R I (5)
Nov we have to specify #* and Qf. The former wave function can be
written as the product of the wave function describing the internal
states of the tritium nucleus and the ground state wave function of

the tritium molecule
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i o4 o
¢ - xnuclsz(aTl’ Rppr Bopr By (6)

The variables RTi and iei denote positions of the ith tritium nucleus
and of the ith electron, respectively, in the laboratory frame (LF)
system. We assume that the T1 nucleus decays and we consider the
internal structure of this nucleus, whereas the other nucleus will be
treated as a point charge. Therefore, R&l denotes the center of mass
(CM) of the Tl nucleus. Similarly, the final wave function ¢f will be
assumed in the form of a product of the wave function describing the
internal states of the 3He nucleus, the free antineutrino wvave, and
the wave function for the molecular system HeT of two nuclei and three

electrons

ik--R

f -1/2 f v ooy f
¥ -0 xnucle YHeT(RHe’ ﬁT' R)el’ P-{eZ’ §e3) (7

vhere Q is the volume 1in which the plane wave is nqrmalized. The
nuclear wave functions depend on relative coordinates only. Egs. (6)
and (7) introduce the obvious approximation of the independence of the
internal nuclear and molecular motions. The actién of the annihilation

operators in Eq. (5) can be easily calculated

3 i L T 1 i
Yn(x) ¢ - (Yn(x)xnucl) VTZ(R&I’ KTZ' ﬁeZ' ie3) (8)
R -, - £
Yp(x) Ye(x) YQ(X) ¢ =
) ik-.X
1/2 f 3

f EY
3 ¥y Ry, B % Ry

ie3)

(9




vhere Rp, Rn’ Hp, and Mn are proton and neutron coordinates and
masses, respectively. Substituting Eqs. (8) and (9) into Eq. (5) we
may factorize the integration over ﬁp and ﬁn if we assume that in the
very small region around Xx where the nuclear wave functions are
localized the molecular and the antineutrino wave functions are
constant, equal to their values at X. After these manipulations Eq.
(5) becomes

1/2, 2 -ikg-x
if” gJ-Q nucl IvHeT(x’

T X, R 02 ﬁe3) e x (10)
.-
2(x, ﬁ ﬁ ie3) dx dﬁ&dﬁe2d§e3

vhere

f vte? oy 2 i
Mruc1® <xnucllvp(xo)vn(xo)xnucl> 1)

;O is an arbitrary value *of ;. and iT = 3&2. The nuclear matrix
element Mnucl is independent of X since the nuclear wave functions
depend only on the relative coordinates. In the 8 decay M 1 is
constant and therefore we do not need to consider it any further. The
expression (10) is practically equivalent to the expression (5) since
the only assumption so far (independence of the internal nuclear and
molecular motions and the high 1localization of the nuclear wave
functions compared to those for the molecule) are verﬁ wvell satisfied.

To further simplify Eq. (10) we could assume the following

factorized form for the HeT wave function

f
YHeT(QHe’ l-{T’ ﬁe1’ ﬁe2’ §e3) - (12)
> >
ik .8 ik B
1 -1 el 1Ke Re1 cM f > >
}% 2 Plz ) P13) © © wn(i’ Te2’ l'-e3)



vhere P?; permutes electrons i and j. The first factor in Eq.(12)

describes the B electron as a plane wvave. The remaining factors
represent the CM motion for the HeT' ion and the vave function for the
nth internal state of this ion. The relative and the CM coordinates

are defined as follows

R - i’T - itHe (13)

e .
A Rei . iﬂe , i=1, 2 (14)

i _ HHeiﬂe * MTKT * me(ﬁel * 13"eZ)
CM HH + M. + 2m
e T e

(15)

where MHe and HT are the masses of He and T nuclei, respectively. Ve

may easily improve upon Eq. (12) by using, instead of the plane vave

ik -R iEe-?el iﬁe.ﬁﬂe
e = e e (16)

the plane vave deformed by the charge at RHe wvhich accounts for the
interaction of the B electron with the (screened) Coulomb field of

He*™. This substitution leads to the following form of the HeT wave

function
, 2 .S 17)
k -ﬁ 1k-i (
1 -1 el el > 1Ko PHe CM £ > >
YﬁeT = (1 - Py - Pry) W&e(‘el) e e v T, fy

The Coulomb function w&g?) can be expressed in a standard wayzo

through the confluent hypergeometric function F(a|b|x)
P 2
g 2 nn/2 . 1ke-r . _ I
W (r) = e T(l - in) e F(1n|1|1(ker - ke-r)) (18)
vhere

2.2
n = Zmee /A ke (19)
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>

I is the standard gamma function, m, is the electron mass, ke = |ke|,
r = I?I, and Z is the effective charge of the daughter nucleus. Since
X _ _ 2 S

in Eq. (10) ﬁel = RHe = x, we only need wke(O). The square of the

modulus of this function at zero

1% (012 = F(z, k) = ™I - ini%s 2V (1 - exp-2mm)]  (20)
e

is known as the Fermi function.

Use of Eq. (17 introduces the first nonnegligible
approximations. In this way we neglect: (i) interaction of the B
electron with the inactive tritium nucleus (ii) actual screening of
the active nucleus and the final states dependence of this screening,
and (iii) correlation of the B electron in its continuum orbital with
the slowv bound-state molecular electrons. The effects (i) - (ii)
should be small if Qe is large, i.e. if l/ke is much smaller than the
distance between the nuclei and the average distance between the
electrons and the He nucleus. At the endpoint energy of 18.6 keV we
have 1/ke = 0.027 a, and this condition is well satisfied.

The effects (ii) and (iii) were considered by Williams and
Koonin21 who calculated the first-order correction for ‘the interaction
between the slow and fast electrons in the case of atomic tritium.
This correction was found to change the |Tif|2 value by only 0.17%
for the two lowvest atomic states. Williams and Koonin do not separate
the effects (ii) and (iii). It 1is possible, however, that almost the
same result could be obtained by a a simpler treatment including only
the effect (ii). For molecular tritium decays these effects should be

of similar magnitude as for the atomic case.



Assuming for simplicity that the initial system was at rest and,
consistently with experiments, that the T2 molecule was in its ground
state we may write the initial molecular wave function as
-1/2,1 2 3
v = 90 & Py, Ty (21)

Substituting in Eq. (10) the wave functions by the forms given by
Eqs. (17) and (21), dropping exchange terms which are known to be

negligible,21 changing the integration variables to those given by

Eqs. (13) - (15), and integrating over the CM coordinates we obtain

T.. = (22)
t ikt

-1 m/2 . f* A U | > 9 3 3

-geu_ e™ra - 1n)JYn (R, 7). Tye v (&, 7, 7, df dF df,

> + > > > >
wvhere T, = (MTﬁ + M+ merZ)/(MHe + MT + 2me), L) S Lo and t, =

R . ' 2
LI Neglecting small terms of the order [mek/(HHe + MT + 2me)] ve

finally obtain the well knownzz’23 expression for Rif
R, - %£E2|M 12F(2, k) P (3) &E, - E,) (23)
if £ 2 '"nucl v Ke) Fpld i~ 7f
Q
The quantity
>
> f > > iq.ﬁ i - > 2
(@) = <Y (R, £, tple’ V@&, £, £, (24)
vhere
M
g - - L K (25)
MHe + MT + Zme

can be interpreted as the probability density of finding the daughter

. . . - %4
system in the final state for a given value of the recoil momentum k.
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It was shown in Part II that the dependence of Pn(a) on the
direction of a is eliminated after introduction of the adiabatic
approximation for Yi and Y:, application of the standard partial wave
expansion for exp(ia-?), and summing Eq. (23) over the degenerate
final states. Using for simplicity the same letters for the summed

quantities we may write Eq. (23) as

2
R, = 2% |y

2
Yl 1V F(Z, k) P o(q) 8(E; - Eg) (26)

nuc

vhere q = |a|.

To obtain the @ spectrum for the nth channel (i.e. tﬁe dependence
of the decay probability density per unit time on the modulus of the 8
electron momentum ke) wve have to sum Eq. (26) over KQ and over the
directions of Ee' Since the plane wvaves have been normalized in @, the
factor 522/(211)6 has to be included when changing summation to
integration.19 If ve neglect the dependence of Pn(q) on EQ (a good
approximation close to the endpoint), the intégration'concerns only

the & function. The argument of this function can be written as

2 2 22 2 4 2.2 2 4 :
E. - E; = Mi Mfc - ¥pye” + mge” - p et o+ moc - ER - AEnl (27)

wvhere Py ='ﬁkx, Hi and Mf are the masses of the initial and final

nuclei, respectively, ER is the recoil energy, and AEnl = Eﬁ - EI is

1
the difference of molecular energies corresponding to the functions Yﬁ

and Yi. Performing the integration gives

2
= 2
IRifde dQe = 3,4 3 IHnuclI F(z, ke) Pn(q) X (28)
2nf e
2
x (Emax- €0 - Ee) [(Emax_ 0 ~ Ee) -m

4,172
c '}

L)
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where Qe denotes angles of ﬁe, Ee is the total energy of the B
. 2 2

electron (including the rest energy), E = M;c” - Mec™ - Ep - &y,

is the endpoint energy of the B spectrum for n =1 and m, = 0, and €

= Ef - Ef. Multiplying Eq. (28) with pz dpe ve obtain the probability

n

of the decay into channel n with electron momentum between Pe and Pe *
dpe. This quantity is proportional to the number dNn(pe) of B
electrons in this momentum range emitted per unit time. Denoting the
proportionality constant by A’ we may write

dN_(p,) = (29)

2 4,172

, 2. 2
= A'F(Z, ke) Pn(q) Pe (E - en— Ee) [(Emax— en— Ee) = miC ] dp

max e
To obtain the total B spectrum Eq. (29) has to be summed/integrated

over all the final states. Omitting from nov on the subscript "e" we

may write the final expression for the B spectrum
dN(p) = (30)

, 2
- ARz, k) o IR (@) (E, 4]

n

- en— E)2 -m

2 4,172
- e~ E) [(E 9

ax ax

x dp

Because of the relativistic relation between the momentum and energy

c2p dp = E dE and we may write

E(E) =d ﬁ(E)/dE = A F(Z, ke) pE x

2 2 4,172
x Zﬁ PCQ) (B - -E) [(E_-¢c -E°-ni (31)
where N(E) = N((pzc2 + m2c4)1/2) and A = A'/cz. It will also be
convenient to consider the spectrum as a function of E_ = E - mc2

B
[p = (Ezs/c2 . 2mE6)1/2]
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I(EB) = A F(Z, ke) x (32)
2 2 2 4.1/2
x p (Eﬂ+ mec”) EI: Pn(q) (VO - € - EB)[(UO- € - EB) - moc |
vhere W, = E - mc2 and I(E,) = I(E, + mc2) For each branch of the
0 ~ “max 8’ B :
spectrum the allowed values of E_, are such that W, - ¢ -E_ 2 m-cz.
B 0 n <] v
Therefore UO is the maximum value of E6 for n = 1 and m, = 0; for mgo#

0 the endpoint of the spectrum is shifted by -macz.

Instead of the B spectrum it is convenient to present the so

called Kurie plot,zai.e.

I(EB)

p (Eg + mc®) F(Z,k)

[T

. [$Pn(q) Vg~ &, Egl (Vg € - EB)Z— m%c"]l/z]



III. CONTINUOUS SPECTRUM OF HeT' ION

A. STABILIZATION GRAPHS

In our preliminary work16 it has been shown that the

energies of the electronic resonance states of HeT' can be computed
reliably using the stabilization method25 and a basis set of
explicitly correlated functions

r. r. s, S, u

vhere & and n denote the elliptic coordinates, p = 2r..,/R, R=|ﬁ|, ry

12 2
= |?1 - ?ZI' oy 61, and 62 are nonlinear variational parameters
and Lo ;i’ Si» Ei’ and M, are integers. These computations have been-
extended, using the same 200-term expansion of the wave function and
searching for the optimum values of the exponénts. This resulted in
improved stabilities of the resonance energies, especially for
intermediate values of R. As an example we present in Fig. 1 a
stabilization graph computed for R = 1.4 bohr. The enérgies are shown
as functions of an overall scaling parameter, s, applied to the
exponents in the function (33). When compared with Fig. 3 in Ref. 16,
the improvement is clearly seen, especially for the higher resonance
states. The results also indicate that to get stable energies for
various resonance states different sets of exponents must be used.
This is, of course, not surprising for states corresponding to

different electronic configurations.
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Determination of the energies of the 5 lowest resonance states
of HeT' did not present any essential difficulties over a wide range
of internuclear distances. For higher states, however, problems have
been encountered. It was not uncommon that a resonance state, clearly
seen on a stabilization graph computed with one set of nonlinear
parameters, disappeared if other initial values of the exponents were
used. Sometimes an apparently sharp resonance state was obtained for a
certain internuclear distance but it was difficult, or impossible, to
find this state at an adjacent internuclear distance. For higher
energies such problems are quite natural, since the borderline between
a resonance and a scattering state becomes diffuse. In Table I we
list the computed energies of the resonance states. For the 5 lowest
states the results are complete. For the higher ones we list only
those energies that seemed to be highly reliable. To obtain the
energies, the point of the best stability was estimated from the graph
and the value of the energy at this point was linearly interpolated
from tvo closest calculated points. It 1is difficult to assess the
accuracy of the results. The error can certainly affect the last
figure quoted. ‘

There are three possible dissociation channels of HeT*: He' + T,

++

He + T*, and He + T . Therefore, at large distances, completely

different exponents must be used in the wave function to represent
electronic configurations corresponding to the above three types of
dissociation. The results presented in Table I describe the He' + T
dissociation which requires opposite signs of 61 and 62 in the basis
set (33). In Table II we 1list results obtained for the states that

dissociate into He + T* described by a wave function with the same
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signs of Bl and 52. The same results are also shown in Fig. 2. The
third channel has not been specifically considered by us.

There are no literature data for HeT® resonances to compare
vith. Therefore, we performed a detailed analysis of the small and
large R behavior of our results. In those regions it is possible to
compare with results of accurate calculations for the atoms obtained
in the limit cases. Let wus first consider the results presented in
Table II and Fig. 2. Because of the exponents used, we should obtain
for large R the resonance states of the He atom. Indeed, our lowest
eigenvalue is very close to the lovest s resonance state of He whose
energy is E = -0.77787 hartree26. The twvo higher eigenvalues approach,
respectively, the lowest 1D and 1P resonance states of He with
energies E = -0.7028 hartree27 and E = -0.69314 hartree.26 In Fig. 3
we show the stabilization graph computed at R = 15 bohr with the same
type of exponents. The fourth (higher) resonance state corresponds
here to the second 1S resonance state of He (E = -0.62193 hartree).26
No resonance state, however, is seen in the vicinity of E = -0.59707
hartree,26 vhich is the energy of the second 1P resonance state of
helium. Apparently different exponents in the wave funétion are needed
to describe this state.

To further check the large R behavior, we computed with our
program the asymptotic values of the energies assuming that the charge
21 of the T center is changed from 1 to 0 in the Hamiltonian and using
the same expansion of the wave function. Thus, computations for the
helium atom have been performed in the elliptic coordinates. These
computations have been carried out assuming R = 10.0 and R = 1.0 bohr

for the elliptic coordinates. In both cases we obtained results in
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full agreement with the above described HeT' calculation. The
stabilization graph obtained for Z1 = 0 and R = 1.0 is shown in
Fig. 4. In this case one can also notice the second 1P state at E =
~0.597 hartree, missing in Fig. 3.

As reported earlier16, similar results had also been obtained for
small internuclear distances. With decreasing R the energies of two
resonance states of HeT' approach the energy of the lowest 1D and 1P
autoionizing states of Li* at E= -1.772 hartree28 and E = -1.75756
hartree,26 respectively. As for large R, we performed computations for
the united atom system, Li%, using our trial function in elliptic
coordinates, and assuming various distances between centers of
coordinates. In all cases consistent results have been obtained. As an
example we show in Fig. 5 a stabilization graph obtained for the Li*
ion assuming R = 1.4 bohr for elliptic coord;nates. The energies of
the four lowest resonance states are listed in Table III and compared

with accurate values.26’28

It is seen that we réproduced quite
accurately the energies of the four lowest resonance states of Li‘.
The above comparison with published results for the atomic cases
vas made to judge the reliability of our potential energy curves. The
very good agreement with the literature data gives us high confidence
in our results for the lowest molecular resonances. As a byproduct of

our study accurate potential energy curves have been obtained for all

the important states of HeT® ion. These curves are presented in Fig.

6.

B. PROBABILITIES
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The P (q) appearing in Eq. (26) has been calculated for each
point on the stabilization graph. Within the adiabatic approximation

\ . . 15
this quantity can be written as

® . 2
Poys (@) = 23+ DS s2(R) 3,(aR) £5, ((R) £5(R) dR (34)

vhere n labels now only consecutive electronic states, v and J are the
vibrational and rotational quantum numbers, respectively, jJ(x) is the
spherical Bessel function, fﬁvJ -and fé are the HeT' and T2 radial
vibrational wave functions, respectively, and Sn(R) denotes the

overlap integral of the electronic wave functions
f - > i, - > > >
sn(R) = f “’n(rlr r2! R) wl(rl’ r2' R) drl drz (35)

For the continuous part of the nuclear motion spectrum the expression
(34) will not be dependent on v and the vibrat16n31 vave function fﬁvJ
has to be replaced by a properly normalized continuum wave function
fgj(RlEf). A similar reinterpretation  should be made for the
continuous part of the electronic spectrum. In our calculations,
however, the electronic continuum has been discretized, therefore the
formula (35) alwvays holds. In accordance vith the common
interpretation of the continuum discretization, the probabilities in
the continuum represent the total probability connected with a
resonance state or with all scattering states within some energy
range. They should not be confused with the probability density
function, which is not recovered by our method.

In Part II we have presented calculations for all the important

discrete electronic states of HeT' using the full expression (34). For
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the remainder of the spectrum it should be sufficient15 not to resolve
the nuclear motion. Summing/integrating Eq. (34) over v and J, and

using a closure relation gives then the following result29

T2 i oy 12
Pa(@) =,y Ppyy(@) + I J Pyy(alE) dE - | Su(R)[£0(R) ] “dR (36)

One may go one step further by assuming that Sn(R) is a slowly varying

function of R in the region where fS(R) is nonzero. This gives

2 i 2 2
Pr(@) = S,(R) [ [Fp(RII%dR = S, (R) (37)

vhere Re is the equilibrium distance in the parent molecule. Eq. (37)
means that the overlap integral between the electronic wave functions
can serve as a simplest approximation of the probability distribution.

The probability distribution for the lowest discrete electronic
states of HeT' was given in Part II. For the remaining states we used
the expression (36) to obtain the probabilities. This procedure leads
to a difficulty in determining the value of €, needed in Eq. (31). Ve
adopted for it the difference between the ES(R) energy averaged over R
using a formula analogous to Eq. (36) and the Ef(R) enérgy averaged in
the same way. |

For higher states in the electronic continﬁum the secular
equation root number connected with a given resonance state may vary
with R. This vas not the case, hovever, for all the important low
lying resonances in the present basis set. Therefore, for all the
states considered wve identified the electronic 1level with the root
number. This is a justified approximation since, as it will be shown
in the next section, high accuracy of this part of the spectrum is not

important for determining the neutrino mass.
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IV. DEPENDENCE OF THE NEUTRINO MASS ON ACCURACY OF THEORETICAL DATA

Our best probability distribution has been tabulated in Ref. 17.
We can estimate the accuracy of the energies and probabilities, and
this wvas done in our previous work.u'-17 Hovever, such estimations do
not tell much about the error of a neutrino mass determined using
these data. To asses this error we employed the following procedure:
(a) Assume that our probability function of Ref. 17 defines a
reference system; (b) Construct a B spectrum for a hypothetical
neutrino mass (e.g., m, = 30 eV); (c) Convolute this spectrum with an
experimental resolution function; (d) Generate "experimental" points
by the Monte Carlo method with a Gaussian distribution; (e) Fit the
obtained spectrum with various model spectra using the least squares
method. In this manner we can determine the influence of different
approximations, introduced when calculating the model spectra, on the

neutrino mass inferred from a B-decay experiment.

A. CONSTRUCTION OF SPECTRA

The calculated I(ES) has to be convoluted with a resolution

function according to
IR(EB) = ] I(E’') R(E’, EB) dE’ (45)

Lately the problem of proper determination of the resolution function

in a neutrino mass experiment has been the subject of many
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t‘lisc:ussions.:io_32 It was shown that the use of an inaccurate

resolution function to extract the neutrino mass can lead to entirely
wrong conclusions. In particular an overestimated width of the
resolution function would give too large neutrino mass. The
measurement of the resolution function is not easy. In the consecutive
IETP group experimentsz's’6 several aspects of the determination of
this function have been modified. For our analysis we have taken
their "total" resolution function from Ref. 6. We have fitted this

function by the following analytical expression

2
Blexp[-al(E' - EB) ] for E’' - EB <0
R(E’,EB) = R(E' - EB) = 62/[(E’ - EB)Z + ag] for 0 < E’' - EB £ 25
By/[(E" - EB)2 . a§] for B - Eg 225 eV
(46)
vhere @ = 0.0051, Bl = 0.079, @y = 24.7, 62 = 48.1, ay = 70.6, B3 =

218.8. Both functions are shown in Fig. 7.

According to Ref. 6, backward scattering causes the resolution

function to be constant for 400 < E* - < 2500 eV (see Fig. 1 of

Eg
Ref. 6). The numerical procedure used by the IETP group to convolute

the resolution function truncates, however, this function at some
33

point. Therefore, we decided to truncate the function (46) at some

energy as well, and we ignored the above region of constant R. To

avoid problems in the fitting process, a Gaussian tail exp[-a(E -

B, )] vith a small @ = 0.05 V™2 was added at the truncation point

Etr' In addition to the truncated function (46) we have used a
12,34

resolution function of Fackler et al Preliminary measurements

show that the resolution function of their apparatus is Gaussian with
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a vidth of a few electronvolts. We have taken a Gaussian function
(2rt)—1/2 a'l exp[-(E’-EB)Z/(Za)Z] with ¢ = 2 eV which corresponds to
the width at half height of 4.7 eV.

To obtain the "experimental"” data we have to add some statistics
to our values. As in Ref. 33, we assumed that for each EB the
statistical error has a Gaussian distribution with standard deviation
a(Eﬁ) = {frfgj. Since the probability per wunit time for a given
nucleus to emit a B electron with an energy within, say, a 1 eV bin is
very small, this deviation is a good approximation of the actual one.
Ve should note that the error bars shown in Fig. 1 of Ref. 2 and in
Fig. 8 of Ref. 33 exhibit a behavior qualitatively different from the
one produced by the above formula. Apparently the authors plot
something else than they claim 1in the text.33 Notice also, that the
relative error at each EB is dependent on the normalization of the
spectrum. We have arbitrarily normalized our IR(EB) to 1000 at 100 eV
from the endpoint. The values obtained by fitting the "experimental”
spectrum with the model ones, given below, have been obtained, of
course, as mean values from several runs with various sequences of
random numbers.

The "experimental" spectrum was always generated using our best
probability distribution published in Ref. 17. The model spectra wvere
obtained assuming the following decays: bare nuclear, atomic in the
tvo-level model.7 atomic, and molecular with various levels of
accuracy. There are three parameters in each model: m,s UO’ and A. In

our work we have to choose a value of UO for construction of the

"experimental" spectrum. The energy UO has already been defined as

WO = M;e” - Mee™ - Ep - me” - AEll (47)
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In a recent paper Lippmaa et 31.35 measured very accurately the mass
difference between the tritium and 3He atoms obtaining Aﬂ = 18599 + 2

eV. Using Eq. (47) this value can be expressed as

M=V, o+ Ep - AEEI‘EI‘ + 8By, (48)

AE?? is the difference of the electronic energies of the 3He and T

atoms and it is equal to -65.4 eV, for ER ve have taken the standard
value of 3 eV, and AEll = -49.1 eV. This leads to UO = 18580 eV. For
calculation of the Fermi factor F(Z, ke) ve took Z =1 following
Villiams and Koonin,21 i.e. we assumed that the charge of the He
nucleus is screened by one electron charge. In the investigated region

F(Z, ke) is almost constant as a function of E, and thérefore the

choice of Z has practically no influence on our- results.

B. RESULTS OF FITS

First we studied the influence of the above mentioned truncation
of the resolution function (46) on the determined value of the
neutrino mass. We assumed a neutrino mass of 30 eV, integration step
of 1 eV and fits were made over a 350 eV range below-the endpoint and
the nonzero region above it. Various truncations of the function (46)
have been used, ranging from 100 eV to the nontruncated function. Ve
have also made calculations taking for construction of the
"experimental" spectrum different truncations than for the model one.
The fit parameters proved to be very insensitive to the range

variations, provided that it was identical for both spectra: changes
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in the neutrino mass and wo vere ehtirely negligible (~0.01 eV). If,
hovever, the ranges vere different, the fit parameters were changing
substantially. For example, if the resolution function in the
"experimental"” spectrum was not truncated whereas it was truncated to
100 eV in the model one, the obtained m and Vo vere 17 and 7 eV too
small, respectively. Vith interchanged ranges, the above values were
17 and 11 eV too large, respectively. As discussed above, the
integration in Eq. (45) 1is truncaied during processing of the
experimental data.33 This will lead to a discrepancy between the
experimental and model values of the spectra (since the former values
naturally contain a contribution from the region neglected in
convoluting the latter ones) and in effect to a neutrino mass that is
too small.

Our next step was to fit in the various model spectga. The
results with the IETP resolution function are presented -in Table IV.
The shifts from the 30 eV mass for the bare nucleus and the atomic
model spectra (23 and 5 eV, respectively) are very similar to those
obtained in Ref. 6 when analyzing the valine'spectrum vith the same
models (21 and 4 eV, respectively). The UO values alsolagree wvell. The
atomic two-level model7 agrees remarkably well with the accurate
atomic result. The other results show that with. the assumptions
employed in Table IV any reasonable molecular tritium spectrum gives a
value for the neutrino mass which is very close to 30 eV. The last
line in the table represents an attempt to fit our "experimental"
spectrum using the identical probability distribution for the model
spectrum. The result is not exactly equal to 30 eV because of random

deviations in the sample. All the data in Table IV were obtained on
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the same series of sets of random numbers. The differences between
various models are well preserved even in a single Monte Carlo run.
The neutrino mass is the parameter most sensitive to the Monte Carlo
sampling. In Table IV we give also the results of runs without
statistical deviations added in the "experimental" spectrum (but with
the same weights as above). The values agree vithin the error bounds
with the Monte Carlo results, with a shift of ~0.1 eV towards larger
neutrino mass.

In Table V we present analogous results with a Gaussian
resolution function of a 4.7 eV width. Conclusions similar to those
drawn from Table IV apply to these results. The only notable
difference is that the fitted L for the bare nucleus model spectrum
is nov about 6 eV larger. With this resolution function the neutrino
mass from a run without the statistical devjation is 0.1 - 0.3 eV
smaller than the Monte Carlo value.

Ve tested the importance of the approximation introduced by Eq.
(17). To this end we took probabilities obtained from a 200-term wave
function used for the stabilization method calcﬁlation for a fixed R =
1.4 bohr, decreased the probability for the ground state by 0.2%, and
increased the probability for the first excited state by the same
amount (c.f. Ref. 21). As shown in Tables IV and V, this procedure led
to the same value of the extracted neutrino mass (within 0.1 eV)
indicating sufficiently high accuracy of the present theoretical
formula.

To show the accuracy of our basis sets we used for construction
of the model spectrum the probability distribution36 obtained with

relatively poor configuration interaction (CI) expansion in s and p



Gaussian type orbital (GTO) basis set. This represents a standard
quantum chemical calculation and it is similar to the latest work by
Kaplan et al.9 The obtained results should be compared with our R =
1.4 bohr results. Tables IV and V showv that the agreement is quite
good. Therefore such calculations are entirely adequate if the
neutrino mass is to be determined with a few eV accuracy.

Let us now discuss the effect of nuclear motion. From Tables IV
and V ve see that all our molecular spectra lead to almost identical
neutrino masses. The nuclear motion effects produce -~1.5 - 1.8 eV
shift of the endpoint energy. This could be predicted because of the
characteristic change of the shape of Kurie plots at.the endpoint
discussed by us in Ref. 17. The above shift is related to the ~1 eV
spacing between the final plot and the plots representing calculations
wvithout including the nuclear motion.

The resolution function (46) has about 36 eV width at half
height. To check how an wunder/overestimation of the width can
influence the results we constructed two fuﬁctions similar to the
function (46) but of 45 and 25 eV width. All thg parts of the function
(46) have been proportionally contracted or expanded. The results
shown in Table VI indicate that this effect may .be smaller than
expected.m_32 The changes in both the neutrino mass and the endpoint
energy are not larger than 5 eV even in the most drastic case when the
widths for the "experimental" and model spectra differ by 20 eV.

The almost identical values of the neutrino mass obtained with
very different molecular model spectra clearly point out that the
probability distribution in the shake-off region cannot have any

significant influence on the results. To make it even more certain we
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performed calculations with a probability distribution obtained from
our final probability distribution17 by binning the values lying above
the ionization limit. Bins of 1 and 10 eV width have been used. The
tvo obtained model spectra led to deviations of about 0.01 and 0.1 eV,
respectively, in both the neutrino mass and the endpoint energy.

All the above calculations have been performed with the neutrino
mass equal to 30 eV in the "experimental" spectrum. Table VII shows
results of the same type calculations for a 1 eV mass. Since the two
resolution functions produced almost identical conclusions above, we
restricted the calculations to the Gaussian resolution function of 4.7
eV width. We observe that accuracy of the theoretical model is now
much more important. The less accurate models, including the GTO CI
molecular calculation, predict zero mass. If the nuclear motion
effects are not included, the mass is 0.6 eV too small, Inclusion of
the nuclear motion inkan average way -leads to almost twice too large
neutrino mass. This shovs that the effects of the nuclear motion are
crucial for determining the neutrino mass if it is of the order of 1-
eV.

Let us point out that it 1is very important that the resolution
function is rapidly falling off for small EB' Let us consider the
expression (45) for EB = Vo and a Lorenzian resolutibn function. This
function behaves as (E’' - \JO)-2 in the tail while I(E’) ~ (E’ - WO)2
in a large region below the endpoint. Therefore, the integrand in Eq.
(45) is constant in this region, which causes the integral to be
quasidivergent. It is not really divergent due to the standard shape

of the B spectrum. To compute this integral we had to now integrate up

to E’ = 0. From the practical point of view this means that, due to
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the resolution, the number of events at EB = UO is mainly defined by
the value of I for E’ hundreds of electronvolts from the endpoint.
Clearly, it would be hard to believe that any. experiment can be
sensitive to a small effect near the endpoint 1if the resolution
changes the actual spectrum so drastically. Ve made some runs with a
long-tail resolution function finding that the results are extremely
sensitive to truncations of this tail. An approach similar to ours was
taken by Law.37 He used, however, a resolution function Lorenzian in

p. With this choice, all the problem discussed above becomes even more

severe.
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V. SOLID STATE EFFECTS

The results presented above refer to gaseous T2. One can show,38
however, that in the case of frozen TZ’ as used in the experiment of
Ref. 12, the fractional change of the T2 vave function, Ay/y, caused
by the binding in the crystal lattice, amounts to less than 0.1%. On
the other hand, the final states of the system may be more effected by
the solid state surrounding than the initial state. Wagner and
Taylor39 performed a CS2 experiment which found an energy shift of 2
eV due to the charge - induced dipole interactions in the solid. Let
us assume for a moment that the effect is of the same order for the
beta decay in solid TZ' The above interaction leads to a shift of
comparable size for all the lowv lying states of HeT®. The final effect
on the neutrino mass will be much smaller than 2 eV since had the
shifts been‘identical for all the levels, it would have had no effect
on the neutrino mass.

Ve can easily estimate the actual value of the above discussed
shift for HeT™ and for CSZ' The effect depends on the distances
between molecules in a solid, which are about 1.5 times larger for 052
than for TZ’ and on the polarizability of a molecule, which is 10
times larger for CS2 than for T2. A simple calculation based on the
multipole expansion shifts the energy by about 0.8 eV and 3.6 eV for
HeT* and CSZ’ respectively. The latter value 1is in a good agreement
wvith the one obtained in the Vagner and Taylor39 experiment. A more
elaborate calculation could lead to a somewhat different value,

particularly for CSZ' This is because in the x-ray photoemission the

system changes from a closed-shell to an open-shell one while in the
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case of B decay the shell structure does not change. It is well known
that the interaction of closed-shell systems is much weaker than that
involving open shells. Also the overlap betveen molecules is much
larger for CSZ' It seems that any possible estimation of the effect of
the solid state surrounding is much smaller than 1 eV and therefore
our results can be applied for the solid T2 experiment of 1 eV
accuracy.

To support the above conclusions we give here a more detailed
description of the estimation of the solid state energy shifts. The
crystal structure of CS2 has been recently reinvestigated_by Povell et
40

al They found that the crystal 1is orthorhombic Cmca (D18/2h) with

four molecules in a cell. The molecules are in layers parallel to the
bc plane and are tilted by an angle ¢ = 48 degree with respect to the
b axis. The lattice parameters are a = 6.1, b = 5.3 and c = 9.4 A.
Villiams and Amos41 calculated various properties of CS2 using SCF and
MCSCF methods. The polarizability o was obtained only by finite field
SCF but its value 54.0 a.u. {1 a.u. of polarizability = ezaéE;1 =
1.6488 (-41) F m2] agrees well with the value 55.2 a.u. which Villiams
and Amos extracted from an experiment by Bogaard.[‘2 Thé interaction of
the charge on CSE or HeT® with the induced dipoles can be easily

estimated from the multipole expansion as —aRia/Z,‘ vhere R, is the

1
distance between molecules. For the <crystal this wvalue has to be
multiplied by a lattice factor. This factor for the fcc structure of
T2 is 25.1'3 The value of the factor for the CS2 crystal structure is
unknown and therefore in all the calculations the same value of 25 was

used. For H2 at R = 1.4 bohr the parallel and perpendicular components

of a« are 6.380 and 4.578 a.u., respectively.44 Taking the isotropic a
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= 5.17 a.u. and R1 = 6.79 bohr (R1 is the distance between centers of
molecules in the solid Dz; wve could not find this value for T2 but it
will be slightly smaller) leads to an energy shift of 0.83 eV. If we
take for CS2 the Ry value as an average of the three distances given
above R1 = [(a+b/2+4¢c/2)/3) = 8.5 a.u., ve get 3.6 eV for the shift.
Another possible effect peculiar to crystals could be the
recoilless B decay of a T2 molecule. If this happens, a corresponding
shift of EB occurs to higher values by the amount of the recoil energy
ER‘ Such events, if occurring significantly, could seriously change
the B spectrum. Hovever, we will show that these events can be safely

ignored.

The phenomenon considered is reminiscent of the M8ssbauer
effect45 involving the recoilless y emission of heavy nuclei that are
embedded in crystals. The theory of this effect 1is reviewed in a
classic article by Boyle and Hall.46 Qualitatively a recoilless
emission can only take place if the decaying system is quite rigidly
bound to the bulk crystal. This 1is «clearly possible in M8ssbauer
spectroscopy but seems impossible for T2 crystal since the molecular
crystal binding energy of about 3-10_3 eV is only a tiny fraction of
the recoil energy ER = 3 eV. |

To arrive at a more quantitative measure ve start from the
Heisenberg uncertainty principle. Quantum mechanically a single T2
molecule is a subsystem of the entire crystal and therefore, strictly
speaking, it will not be in a definitive eigenstate. Yet we can
associate a localization width of the molecule which will be of the

order of the lattice spacing

ax -~ R1 = 6.5 bohr (49)

The corresponding spread in the T2 CM momentum is therefore



dp ~4/8x = 0.15 a.u. (50)

However, the recoil momentum associated with a B decay Iis pﬂ =

1/2
B)

(2E = 37 a.u., vwhich is well beyond the spread of Eq. (50).

According to the theory,46 the probability of the recoilless emission
is given by the Debye-Waller factor. Assuming an essentially Gaussian
localization of the T2 molecule, this factor 1is found to have the

form46

f = exp(—pé <x2>) (51)
vhere <x2> is the mean square of the deviation of T2 from the
equilibrium position

x> ~ (ax/2)% = 10 bohr? : (52)

Therefore f ~ 10_5945,

a very small number indeed, which indicates
that the recoilless B decay can be ignored.

Once the emitted B electron has left the vicinity of the daughter
molecule, multiple scattering off other T2 molecules in the solid
source can occur. Inelastic collisions can absorb a significant amount
of kinetic energy of the B electron, which could cause a discernible
smearing of the B spectrum. One way to eliminate this effect
experimentally is by the use of various thicknesses of the (layered)
source - up to several hundred layers will be considered. Since a thin
film sample will contain relatively few layers and the e—T2 inelastic
scattering cross-section is quite small, we expect the multiple
scattering to cause only very small energy losses 1in this case.

Hovever, the quantitative details are lacking and we are investigating

them following methods developed earlier.47
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VI. DISCUSSION AND CONCLUSIONS

The various approximations made in the derivation of the T2 B-
decay spectrum of Eq. (32) have been pointed out in Sec. II. Qur
treatment has been basically nonrelativistic but we used a correct
relativistic relations to describe the kinematics of the B electron
and the antineutrino, which should at present be entirely sufficient
for the process considered. The relativistic effects are expected to
be negligible.4 The problem may, however, require investigation if the
neutrino mass happens to be very small.

Due to the weakness of the weak interaction the restriction to
first order in the interaction in Eq. (2) should not lead to any
observable error. The same 1is true for the assumption of the
independence of the internal nuclear and molecular motions and of the
localization of the internal nuclear wave function. The' first
nonnegligible approximation is introduced by Eq. (17). On the basis of
Villiams and Koonin’s21 results for the atomic tritium ve may expect
this effect to be about 0.2% in the transition probabilities to the
lovest electronic states. As shown in Sec. IV, such error can lead to
an overestimation of the neutrino mass by 1less than 0.1 eV for the
true neutrino mass equal to 30 eV. Williams and Koonin have also found
that the correction due to the exchange of the B electron with the
molecular ones should be smaller by a factor n2 (= 0.0272) than the
above correction and therefore negligible.

Another approximation was the use of the adiabatic form for the
molecular vave functions of T, and HeT'. For these systems this

2
approximation is known48 to lead to results wvhich differ negligibly
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from those obtained in the complete nonadiabatic treatment. The
possible errors will be definitely smaller than those introduced by
the inaccuracies of the present basis set expansions of the vave
functions (see below).

Ve also assumed that in the probability Pn(q) the value of q,
vhich is proportional to the length of the vector representing the sum
of the B electron and antineutrino momenta, 1is independent of the
latter momentum. Furthermore, in our calculations of Pn ve took for g
a constant value such that 2q2 = 18.6 keV. This should be a good
approximation in the region close to the endpoint, as investigated.
Ve have found that the value of Pn(q) wvas quite insensitive to the
changes in q2 of the order of 100 eV.

The probabilities Pn and the energies En have been calculated
vith some numerical errors. We were able to reduce most of these
errors to an insignificant level. High accuracy of the electronic
bound states has been demonstrated in Part I: the error of Si was
determined to be of the order of 0.0001 and the error of En of the
order of 0.0001 eV. The equations for the nuclear motion have been
solved accurately enough to introduce no additional error, which was
checked by employing various sum rules.15 Therefore we believe that
the error of our value of the probability anJ is determined by the
error of Si(R), at least for n = 1. For the excited electronic states
of HeT' the relative error might be somevhat larger since the
adiabatic correction for the nuclear motion has not been included in
our calculations. The total probability connected with these states
is, however, smaller than the probability of tramsitions to the ground

electronic state, so that the absolute error should not be larger than



the one estimated above. Since the electronic states 1-4 and 6, for
vhich the nuclear motion in 3HeT+ has been considered, give 84.2% of
the probability, and affect the most important part of the 8 spectrum,
it is entirely sufficient for the remaining states to account for the
nuclear motion in the averaged manner according to Eq. (36).

The accuracy of the electronic resonance states is lower, and
there is a small arbitrariness in the positions of the states. Since
most of the transition probability in the spectrum above the
ionization threshold is connected with the resonances, this could in
principle lead to some inaccuracies. We have found, however, (see Sec.
IV) that even drastic changes of both the energies and transition
probabilities caused by binning the values 1in the shake-off region
have practically no effect on our final result.

Recently Martin and Cohen49 calculated the Kurie plots for the B
decay of T2 using the so called Stieltjes imaging techniqueso for the
continuum states. This technique provides continuous probability
distribution from a computation that produces a discrete spectrum.
Although Martin and Cohen’s approach to the continuum is formally more
advanced than the one used in the present work, thei: results in the
shake-off region do not need to be more accurate than ours. There are
twvo reasons for this. First, these authors performed calculations only
for R = 1.4 bohr, which cannot be adequate for the states which are of
a strongly repulsive character in the region of interest. Second, they
base their analysis on the discrete spectrum resulting from
diagonalization of a Hamiltonian matrix which is of much poorer
quality than ours. The Stieltjes treatment leads to a continuous

probability density function which is shifted to lower energies



compared to our results. One can also infer from their Fig. 1b that
most of the probability in this region comes from a -10 eV wide
resonance in the region of 60 - 70 eV. Our results described in Sec.
III show that this probability is connected with two resonances
separated by about 7 eV. We have performed calculations51 of these
resonances widths by analytical continuation of stabilization graphs.
These calculations showed51 that both resonances are narrow, having
the widths of about 0.1 eV. Although the probability distribution in
the shake-off region is of importance for physical chemistry, we have
shown in Sec. IV that its precise knovledge is fortunately not
important for the neutrino mass determination.

If the neutrino mass is 30 eV, even relatively poor molecular
calculations for a single internuclear distance are good enough for
determination of this mass. Therefore, the Kaplan et al.9 calculations
for valines should be appropriate for analyzing the IETP experiment.6
The situation is quite different for a 1 eV neutrino mass. The less
accurate calculations would lead to zero neutrino mass .in this case.
There are, of course, two kinds of molecular effects that influence
the neutrino mass determination: the effects of molecular binding and
the effects of the nuclear motion within molecules. Even very accurate
calculations which include only the former effects, i.e. calculations
for a fixed internuclear distance, would not be adequate for a 1 eV
mass. We showed in Ref. 17 that in the vicinity of the endpoint (last
~3 eV) the latter effects, which had not been considered before,
introduce a qualitative change of the shape of the B spectrum. Due to

the spread of the final rovibrational levels in the ground electronic

state, the final theoretical Kurie plot close to the endpoint is



practically tangent to the energy axis. This is to be compared with
the pure nuclear or atomic decay where the plot is essentially
perpendicular to the energy axis. This phenomenon does not appear in a
molecular calculation which neglects the nuclear motion in the
daughter molecular ion. If the neutrino mass 1is of the order of 1 eV
or smaller accounting for this effect is crucial.

Solid state effects other than possible B electron energy losses
due to e-T, inelastic scattering have been found negligible. A
quantitative study of these losses will be a subject of a forthcoming
study. ,

The analysis of Section IV sheds also some light on the guestion
of the resolution function as used in the IETP experiments-2'5'6'33
OQur results show that the effect of overestimation of the width of
resolution function may be somewhat smaller than suggested

30-32

before. On the other hand, we show that truncation of the

resolution function, as employed in processing of the experimental

33

data, may introduce some additional inaccuracies.
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. HeT"* energies at R = 1.4 bohr as functions of the scaling

parameter.

. + .
. Energies of some HeT resonance states as functions of R

calculated with exponents corresponding to the dissociation
into He + T'. The He atom resonance states energies shown on

the right axis are from Refs. 26 and 27.

. HeT® energies at R = 15 bohr as functions of the scaling

parameter calculated with exponents corresponding to the
dissociation into He + T'. The He atom resonance states

energies shown on the right axis are from Refs. 26 and 27.

. He energies obtained from calculations in the basis set (33)

vith Z1 = 0 and R = 1.0 bohr as functions of the scaling
parameter. The He atom resonance states energies shown on

the right axis are from Refs. 26 and 27.

Li* energies obtained from calculations in the basis set (33)
with Z1 = 0, 22 = 3, and R = 1.4 bohr. The He atom resonance

states energies shown on the right axis are from Refs. 26 and

28.

Energy curves for HeT'.

. The resolution function from Ref. 6 (broken line) and the fit

of Eq. (46) (solid line).

. The B spectrum of the tritium molecule and the same spectrum

convoluted with a Lorenzian resolution function of 20 eV

vidth.
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Table I.

Energies of a few lowest resonance states of HeT' (hartree).

For large R the exponents in the wave function correspond to

the dissociation into He' &'T

10.

e e = R = (R R e =

1 2
3.164 3.223
2.145 2.228
1.445 1.553
0.53 0.685
0.21 0.39

-0.05 Quls
-0.43 -0.205
-0.69 -0.455
-1.055 -0.825
-1.1405 -0.9973
-1.0949 -1.0140
-1.0452 -1.0089
-1.0161 -1.0045
-1.0048 -1.0022
-1.0014 -1.0012
-1.0004 -1.0002

Energy

3 &
.258 3.415
271 2.435
622 1.792
842 0.99
89 0.68
390 0.410
063 0.095
208 -0.183
391 -0.571
7639 -0.7361
8105 -0.7476
8225 -0.746
.8188 -0.777
.8036 -0.785
.7836 -0.7235
LT4T4 0 -D.7226

. 585
.89
.01
W72
LG40
.116
177
.262
. 7258
L7418
736
737
737
. 7219

7216

6 7
90

.02 1.04
T4 0.77
.450 0.563
«123 0.278
.097 0.081
685

« 733

729

A

.6622

.6802
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Table II. Energies of some resonance states of_HeT+ (hartree).
The exponents in the wave function correspond to

the dissociation into He + T'.

7.0 -0.782 -0.745 -0.678
8.0 -0.780 -0.735 -0.682
9.0 -0.780 -0.730 -0.685
10.0 -0.7B2 -0.725 -0.688
12.0 -0.780 -0.713 -0.690

15.0 -0.780 -0.709 -0.692
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Table III. Energies of the Li* ion (hartree) computed using a 200-term

expansion in elliptic coordinates (R = 1.4 bohr).

State Energy

present Refs. (26, 28)

lsc1y ~1.905 £1.90585
151) _1.766 21.772
1oy -1.756 _1.75756

1502y -1.629 1.63044
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Table IV. Effect of various model spectra on the neutrino mass. The

molecular R = 1.4 and R-averaged spectra were constructed
from 200-term wave functions using 100 lowest eigenstates.
The resolution function of Eq. (46) has been used. The
assumed neutrino mass in the "experimental" spectrum was

30 eV. Fits were made over a 400 eV range with 50 eV above
the endpoint. The integration step was 1 eV. The numbers in
parenthesis denote the RMS of the mean from a series of
Monte Carlo runs. The lower numbers are from a non

Monte Carlo calculation. All values are in eV.

model spectrum m, UO

bare nucleus 6.4 (0.3) 18561.8 (0.05)
6.7 18561.8

two-level atomic 25.5 (0.2) 18573.9 (0.07)
25.6 18573.9

atomic 25.2 (0.2) 18573.7 (0.07)
25.3 18573.7

GTO CI, Ref. 36 29.2 (0.2) 18577.6 (0.08)
29.3 18577.7

molecular R=1.4 bohr, 200-term 30.0 (0.2) 18578.2 (0.08)
30.1 18578.3

same as above but with 0.2% 30.0 (0.2) 18578.3 (0.08)

change of two lowest probabilities 30.1 18578.3

molecular R-averaged 30.2 (0.2) 18578.5 (0.08)
30.3 18578.5‘

final 29.9 (0.2) 18580.0 (0.08)

OO

30.0 18580.
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Table V. Effect of various model spectra on the neutrino mass with
a Gaussian resolution function of 4.7 eV width. The remaining
assumptions were the same as in Table IV.

model spectrum m, VO

bare nucleus 12.3 (0.1) 18562.5 (0.05)
12.2 18562.5

two-level atomic 25.4 (0.1) 18573.9 (0.07)
25.2 18573.8

atomic 25.3 (0.1) 18573.8 (0.06)
25.0 18573.6

GTO CI, Ref. 36 29.3 (0.1) 18577.7 (0.07)
29.1 18577.6

molecular R=1.4 bohr, 200-term 30.0 (0.1) 18578.3 (0.07)
29.7 18578.2

same as above but with 0.2% 30.0 (0.1) 18578.4 (0.07)

change of two lowest probabilities 29.8 18578.2

molecular R-averaged 30.3 (0.1) 18578.6 (0.07)
30.0 18578.5

final 30.2 (0.1) 18580.1 (0.06)

30.0 18580.0




Table VI. Effect of using resolution functions of different widths.
The results presented are from a non Monte Carlo
calculations. The remaining assumptions were the same as in

Table 1IV.
Vidth ("experimental"/model) mo UO

36/36 30.0 18580.0
45/36 29.5 18582.5
36/25 28.4 18582.4
45/25 27.8 18584.8
36/45 31.8 18577.8
25736 33.0 18578.0
25/45 33.2 18575.2
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Table VII. Effect of various model spectra on the neutrino mass with
a Gaussian resolution function of 4.7 eV width. The
neutrino mass used in the "experimental" spectrum was 1 eV.
The integration step was 0.1 eV. The remaining assumptions
wvere the same as in Table IV.

model spectrum L UO

bare nucleus 0.00 18567.19
atomic 0.00 18575.38
GTO CI, Ref. 36 0.00 18577.91
molecular R=1.4 bohr, 200-term 0.40 18578.22
molecular R-averaged 1.92 18578.45

final 1.00 18580.00
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FIGURE 5
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